
Appendix A. The MicroJava Language

This section describes the MicroJava language that is used in the practical part of the
compiler construction module. MicroJava is similar to Java but much simpler.

A.1 General Characteristics

 A MicroJava program consists of a single program file with static fields and static
methods. There are no external classes but only inner classes that can be used as
data types.

 The main method of a MicroJava program is always called main(). When a
MicroJava program is called this method is executed.

 There are
- Constants of type int (e.g. 3) and char (e.g. 'x') but no string constants.
- Variables: all variables of the program are static.
- Primitive types: int, char (Ascii)
- Reference types: onedimensional arrays like in Java as well as classes with fields

but without methods.
- Static methods in the main class.

 There is no garbage collector (allocated objects are only deallocated when the
program ends).

 Predeclared procedures are ord, chr, len.

Sample program

program P
 final int size = 10;

 class Table {
 int[] pos;
 int[] neg;
 }

 Table val;

{
 void main()
 int x, i;
 { /*---------- Initialize val ------------*/
 val = new Table;
 val.pos = new int[size];
 val.neg = new int[size];
 i = 0;
 while (i < size) {
 val.pos[i] = 0; val.neg[i] = 0;
 i++;
 }
 /*---------- Read values ---------*/
 read(x);
 while (x != 0) {
 if (0 <= x && x < size) {
 val.pos[x]++;
 } else if (-size < x && x < 0) {
 val.neg[-x]++;
 }
 read(x);

 }
 }
}

A.2 Syntax

Program = "program" ident {ConstDecl | VarDecl | ClassDecl}
"{" {MethodDecl} "}".

ConstDecl = "final" Type ident "=" (number | charConst) ";".
VarDecl = Type ident {"," ident } ";".
ClassDecl = "class" ident "{" {VarDecl} "}".
MethodDecl = (Type | "void") ident "(" [FormPars] ")" {VarDecl} Block.
FormPars = Type ident {"," Type ident}.
Type = ident ["[" "]"].

Block = "{" {Statement} "}".
Statement = Designator ("=" Expr | "(" [ActPars] ")" | "++" | "--") ";"

| "if" "(" Condition ")" Statement ["else" Statement]
| "while" "(" Condition ")" Statement
| "break" ";"
| "return" [Expr] ";"
| "read" "(" Designator ")" ";"
| "print" "(" Expr ["," number] ")" ";"
| Block
| ";".

ActPars = Expr {"," Expr}.

Condition = CondTerm {"||" CondTerm}.
CondTerm = CondFact {"&&" CondFact}.
CondFact = Expr Relop Expr.
Relop = "==" | "!=" | ">" | ">=" | "<" | "<=".

Expr = ["-"] Term {Addop Term}.
Term = Factor {Mulop Factor}.
Factor = Designator ["(" [ActPars] ")"]

| number
| charConst
| "new" ident ["[" Expr "]"]
| "(" Expr ")".

Designator = ident {"." ident | "[" Expr "]"}.
Addop = "+" | "-".

Mulop = "*" | "/" | "%".

Lexical structure

Terminal classes: ident = letter {letter | digit | "_"}.
number = digit {digit}.
charConst = "'" char "'". // including '\r' and '\n'

Keywords: program class
if else while read print return break
void final new

Operators: + - * / % ++ --
== != > >= < <=
&& ||
() [] { }

= ; , .

Comments: // to the end of line

A.3 Semantics

All terms in this document that have a definition are underlined to emphasize their
special meaning. The definitions of these terms are given here.

Reference type
Arrays and classes are called reference types.

Type of a constant
 The type of an integer constant (e.g. 17) is int.
 The type of a character constant (e.g. 'x') is char.

Same type
Two types are the same
 if they are denoted by the same type name, or
 if both types are arrays and their element types are the same.

Type compatibility
Two types are compatible
 if they are the same, or
 if one of them is a reference type and the other is the type of null.

Assignment compatibility
A type src is assignment compatible with a type dst
 if src and dst are the same, or
 if dst is a reference type and src is the type of null.

Predeclared names
int the type of all integer values
char the type of all character values
null the null value of a class or array variable, meaning "pointing to no value"
chr standard method; chr(i) converts the int expression i into a char value
ord standard method; ord(ch) converts the char value ch into an int value
len standard method; len(a) returns the number of elements of the array a

Scope
A scope is the textual range of a method or a class. It extends from the point after the
declaring method or class name to the closing curly bracket of the method or class
declaration. A scope excludes other scopes that are nested within it. We assume that
there is an (artificial) outermost scope, to which the main class is local and which
contains all predeclared names. The declaration of a name in an inner scope S hides
the declarations of the same name in outer scopes.

Note

 Indirect recursion is not allowed, since every name must be declared before it is
used. This would not be possible if indirect recursion were allowed.

 A predeclared name (e.g. int or char) can be redeclared in an inner scope (but this is
not recommended).

A.4 Context Conditions

General context conditions
 Every name must be declared before it is used.
 A name must not be declared twice in the same scope.
 A program must contain a method named main. It must be declared with a void

function type and must not have parameters.

Context conditions for standard methods
chr(e) e must be an expression of type int.
ord(c) c must be of type char.
len(a) a must be an array.

Context conditions for the MicroJava productions

Program = "program" ident {ConstDecl | VarDecl | ClassDecl} "{" {MethodDecl} "}".

ConstDecl = "final" Type ident "=" (number | charConst) ";".

 The type of number or charConst must be the same as the type of Type.

VarDecl = Type ident ["[" "]"] {"," ident ["[" "]"]} ";".

ClassDecl = "class" ident "{" {VarDecl} "}".

MethodDecl = (Type | "void") ident "(" [FormPars] ")" {VarDecl} "{" {Statement} "}".

 If a method is a function it must be left via a return statement (this is checked at run
time).

FormPars = Type ident ["[" "]"] {"," Type ident ["[" "]"]}.

Type = ident.

 ident must denote a type.

Statement = Designator "=" Expr ";".

 Designator must denote a variable, an array element or an object field.
 The type of Expr must be assignment compatible with the type of Designator.

Statement = Designator ("++" | "--") ";".

 Designator must denote a variable, an array element or an object field.
 Designator must be of type int.

Statement = Designator "(" [ActPars] ")" ";".

 Designator must denote a method.

Statement = "break".

 The break statement must be contained in a while statement

Statement = "read" "(" Designator ")" ";".

 Designator must denote a variable, an array element or an object field.
 Designator must be of type int or char.

Statement = "print" "(" Expr ["," number] ")" ";".

 Expr must be of type int or char.

Statement = "return" [Expr] .

 The type of Expr must be assignment compatible with the function type of the
current method.

 If Expr is missing the current method must be declared as void.

Statement = "if" "(" Condition ")" Statement ["else" Statement]

| "while" "(" Condition ")" Statement
| "{" {Statement} "}"
| ";".

ActPars = Expr {"," Expr}.

 The numbers of actual and formal parameters must match.
 The type of every actual parameter must be assignment compatible with the type of

every formal parameter at corresponding positions.

Condition = CondTerm {"||" CondTerm}.

CondTerm = CondFact {"&&" CondFact}.

CondFact = Expr Relop Expr.

 The types of both expressions must be compatible.
 Classes and arrays can only be checked for equality or inequality.

Expr = Term.

Expr = "-"Term.

 Term must be of type int.

Expr = Expr Addop Term.

 Expr and Term must be of type int.

Term = Factor.

Term = Term Mulop Factor.

 Term and Factor must be of type int.

Factor = Designator | number | charConst| "(" Expr ")".

Factor = Designator "(" [ActPars] ")".

 Designator must denote a method.

Factor = "new" Type .

 Type must denote a class.

Factor = "new" Type "[" Expr "]".

 The type of Expr must be int.

Designator = Designator "." ident .

 The type of Designator must be a class.
 ident must be a field of Designator.

Designator = Designator "[" Expr "]".

 The type of Designator must be an array.
 The type of Expr must be int.

Relop = "==" | "!=" | ">" | ">=" | "<" | "<=".

Addop = "+" | "-".

Mulop = "*" | "/" | "%".

A.5 Implementation Restrictions

 There must not be more than 256 local variables.
 There must not be more than 65536 global variables.
 A class must not have more than 65536 fields.
 The code of the program must not be longer than 8 KBytes.

