
Appendix B. The MicroJava VM

This section describes the architecture of the MicroJava Virtual Machine that is used
in the practical part of this compiler construction module. The MicroJava VM is
similar to the Java VM but has less instructions. Some instructions were also
simplified. Whereas the Java VM uses operand names from the constant pool that are
resolved by the loader, the MicroJava VM uses fixed operand addresses. Java
instructions encode the types of their operands so that a verifyer can check the
consistency of an object file. MicroJava instructions do not encode operand types.

B.1 Memory Layout

The memory areas of the MicroJava VM are as follows.

code
(byte array)

code

pc

data heap

free ra
dl

pstack

fp

sp

estack

esp

data
(word array)

heap
(word array)

pstack
(word array)

estack
(word array)

code This area contains the code of the methods. The register pc contains the index
of the currently executed instruction. mainpc contains the start address of the
method main().

data This area holds the (static or global) data of the main program. It is an array
of variables. Every variable occupies one word (32 bits). The addresses of
the variables are indexes into the array.

heap This area holds the dynamically allocated objects and arrays. The blocks are
allocated consecutively. free points to the beginning of the still unused area
of the heap. Dynamically allocated memory is only returned at the end of the
program. There is no garbage collector. All object fields occupy a single
word (32 bits). Arrays of char elements are byte arrays. Their length is a
multiple of 4. Pointers are byte offsets into the heap. Array objects start with
an invisible word, containing the array length.

pstack In this area (the procedure stack) maintains the activation frames of the
invoked methods. Every frame consists of an array of local variables, each
occupying a single word (32 bits). Their addresses are indexes into the array.
ra is the return address of the method, dl is the dynamic link (a pointer to the
frame of the caller). A newly allocated frame is initialized with all zeroes.

estack This area (the expression stack) is used to store the operands of the
instructions. After every MicroJava statement estack is empty. Method
parameters are passed on the expression stack and are removed by the Enter
instruction of the invoked method. The expression stack is also used to pass
the return value of the method back to the caller.

All data (global variables, local variables, heap variables) are initialized with a null
value (0 for int, chr(0) for char, null for references).

B.2 Instruction Set

The following tables show the instructions of the MicroJava VM together with their
encoding and their behaviour. The third column of the tables show the contents of
estack before and after every instruction, for example

..., val, val

..., val

means that this instruction removes two words from estack and pushes a new word
onto it. The operands of the instructions have the following meaning:

b a byte
s a short int (16 bits)
w a word (32 bits)

Variables of type char are stored in the lowest byte of a word and are manipulated
with word instructions (e.g. load, store). Array elements of type char are stored in a
byte array and are loaded and stored with special instructions.

Loading and storing of local variables

1 load b ... Load
..., val push(local[b]);

2..5 load_n ... Load (n = 0..3)
..., val push(local[n]);

6 store b ..., val Store
... local[b] = pop();

7..10 store_n ..., val Store (n = 0..3)
... local[n] = pop();

Loading and storing of global variables

11 getstatic s ... Load static variable
..., val push(data[s]);

12 putstatic s ..., val Store static variable
... data[s] = pop();

Loading and storing of object fields

13 getfield s ..., adr Load object field
..., val adr = pop()/4; push(heap[adr+s]);

14 putfield s ..., adr, val Store object field
... val = pop(); adr = pop()/4;

heap[adr+s] = val;

Loading of constants

15..20 const_n ... Load constant (n = 0..5)
..., val push(n);

21 const_m1 ... Load minus one
..., -1 push(-1);

22 const w ... Load constant
..., val push(w);

Arithmetic

23 add ..., val1, val2 Add
..., val1+val2 push(pop() + pop());

24 sub ..., val1, val2 Subtract
..., val1-val2 push(-pop() + pop());

25 mul ..., val1, val2 Multiply
..., val1*val2 push(pop() * pop());

26 div ..., val1, val2 Divide
..., val1/val2 x = pop(); push(pop() / x);

27 rem ..., val1, val2 Remainder
..., val1%val2 x = pop(); push(pop() % x);

28 neg ..., val Negate
..., - val push(-pop());

29 shl ..., val, x Shift left
..., val1 x = pop(); push(pop() << x);

30 shr ..., val, x Shift right (arithmetically)
..., val1 x = pop(); push(pop() >> x);

31 inc b1, b2 ... Increment variable
... local[b1] = local[b1] + b2;

Object creation

32 new s ... New object
..., adr allocate area of s bytes;

initialize area to all 0;
push(adr(area));

33 newarray b ..., n New array
..., adr n = pop();

if (b==0)
alloc. array with n elems of byte size;

else if (b==1)
alloc. array with n elems of word size;

initialize array to all 0;
push(adr(array))

Array access

34 aload ..., adr, i Load array element
..., val i = pop(); adr = pop()/4+1;

push(heap[adr+i]);

35 astore ..., adr, i, val Store array element
... val = pop(); i = pop(); adr = pop()/4+1;

heap[adr+i] = val;

36 baload ..., adr, i Load byte array element
..., val i = pop(); adr = pop()/4+1;

x = heap[adr+i/4];
push(byte i%4 of x);

37 bastore ..., adr, i, val Store byte array element
... val = pop(); i = pop(); adr = pop()/4+1;

x = heap[adr+i/4];
set byte i%4 in x;
heap[adr+i/4] = x;

38 arraylength ..., adr Get array length
..., len adr = pop();

push(heap[adr]);

Stack manipulation

39 pop ..., val Remove topmost stack element
... dummy = pop();

40 dup ..., val Duplicate topmost stack element
..., val, val x = pop(); push(x); push(x);

41 dup2 ..., v1, v2 Duplicate top two stack elements
..., v1, v2, v1, v2 y = pop(); x = pop();

push(x); push(y); push(x); push(y);

Jumps (jump distance relative to the beginning of the jump instruction)

42 jmp s Jump unconditionally
pc = pc + s;

43..48 j<cond> s ..., x, y Jump conditionally (eq, ne, lt, le, gt, ge)
... y = pop(); x = pop();

if (x cond y) pc = pc + s;

Method call (PUSH and POP work on pstack)

49 call s Call method
PUSH(pc+3); pc := pc + s;

50 return Return
pc = POP();

51 enter b1, b2 Enter method
psize = b1; lsize = b2; // in words
PUSH(fp); fp = sp; sp = sp + lsize;
initialize frame to 0;
for (i=psize-1;i>=0;i--) local[i] = pop();

52 exit Exit method
sp = fp; fp = POP();

Input/Output

53 read ... Read
..., val readInt(x); push(x);

54 print ..., val, width Print
... width = pop(); writeInt(pop(), width);

55 bread ... Read byte
..., val readChar(ch); push(ch);

56 bprint ..., val, width Print byte
... width = pop(); writeChar(pop(), width);

Miscellaneous

57 trap b Generate run time error
print error message depending on b;
stop execution;

B.3 Object File Format

2 bytes: "MJ"
4 bytes: code size in bytes
4 bytes: number of words for the global data
4 bytes: mainPC: the address of main() relative to the beginning of the code area
n bytes: the code area (n = code size specified in the header)

B.4 Run Time Errors

1 Missing return statement in function.

